CHEMISTRY OF 4-MEMBERED CYCLIC NITRONES (2,3-DIHYDROAZETE 1-OXIDES); A NOVEL ONE-STEP SYNTHESIS OF $N-\text{ACETOXY }\beta-\text{LACTAMS}$

M.L.M. Pennings and D.N. Reinhoudt"

(Laboratory of Organic Chemistry, Twente University of Technology, Enschede, The Netherlands)

Abstract: 2,3-Dihydroazete l-oxide 1. reacts at room temperature with base, acid and lead tetraacetate to give the 5-hydroxyisoxazolidines 4a and e, the 6H-1,2 oxazin-6-one 7 and the N-acetoxy \$-lactam S, respectively:?he reaction with lead tetraacetate Represents a simple one-step conversion of a 4-membered cyclic ni $trone$ *into a* β -lactam.

Recently we reported the first synthesis of 'stable' 4-membered cyclic nitrones (2,3-dihydroazete l-oxides) by the reaction of nitroalkenes with ynamines (laminoacetylenes)¹. Since these 2,3-dihydroazete 1-oxides are isomeric with β -lactams we are now investigating routes to effect this isomerization. Because of the current interest in β -lactam antibiotics, a large number of synthetic routes have been developed for the preparation of β -lactams, but isomerization of 4-membered cyclic nitrones to β -lactams has not yet been reported. An attractive feature of such a synthetic route would be the stereochemistry of the resulting β -lactams. We have shown by X-ray analysis that the 2,3-dihydroazete l-oxides are formed in a stereospecific manner, with the two most bulky substituents (at C-2 and C-3) at the same face of the 4-membered ring. Therefore, if isomerization of the nitrone moiety can be effected without changing this stereochemistry, such a synthesis of B-lactams would be stereospecific.

A large number of reactions are available for the conversion of nitrones into amides. In addition to photochemical rearrangement, aldonitrones have been converted into amides using a variety of chemical reagents such as acids, base, acetyl chloride and phosphorous halides². We wish to report here the preliminary results of a study of the reactivity of 4-membered cyclic nitrones towards such reagents. All the reactions were carried out with 2-(N,N-diethylcarbamoyl)-2-methyl-3-phenyl-2,3-dihydroazete l-oxide (1) at room temperature³.

Reaction of 1 with six equivalents of sodium hydroxide in a mixture of methanol and water (2:l) for one hour yields the two isomeric 5-hydroxyisoxazolidines 4a and 4b (4:1) in a yield of 85%. Recrystallization from toluene/hexane did not affect the ratio of 4a and 4b (m.p. $124.5-125.5^{\circ}C$)⁴. The structures of 4a and 4b were proven by spectroscopic methods. MS: M^+ 278.16 (C₁₅H₂₂N₂O₃); due to hydrogen bonding, IR spectroscopy shows a sharp N-H absorption at 3210 cm^{-1} and a shifted amide absorption at 1615 cm^{-1} . Assuming that these mild reaction conditions have not affected the stereochemistry at $C-3$ and $C-4$, structure $4a$ was assigned to the predominant isomer on the basis of the smaller $trans$ coupling (J=1.0 Hz) between the hydrogen atoms at $C-4$ and $C-5$, compared with the larger cis coupling (J=6.0 Hz) in the other isomer $(\frac{4b}{5})$; $\frac{4a}{5a}$: $\frac{4b}{5b}$ H NMR δ (CDC1₃): 1.86 (s,3H,CH₃), 3.61 (d,J 1Hz,1H, $H=4$), 5.50 (d,J lHz,lH, $H=5$)ppm. ¹³C NMR δ (CDCl₃): 170.3 (s,C=O), 106.4 (d,C-5), 71.3 (s,C-3), 65.6 (d,C-4) 27.1 (q,CH₃)ppm. <u>4b</u>: ¹H NMR δ (CDCl₃): 1.70 (s,3H,CH₃), 3.50 (d,J 6Hz,1H,H-4), 5.70(d,J 6Hz,1H,H-5)ppm. 1^{3} C NMR δ (CDCl₃): 170.3 (s,C=O),

100.5 (d, C-5), 70.7 (s, C-3), 64.6 (d, C-4), 27.1 (q, CH₃)ppm. We assume that the first step in the formation of $4a$ and $4b$ involves hydration to give the azetidine 2. Subsequent opening of the ring will afford the aldehyde 2 which then rapidly cyclizes to give $4a$ and $4b$ (scheme). Recently Perronnet et al.⁵ have reported the cyclization of a similar ketone to a 5-hydroxyisoxazolidin-3-one.

When $\underline{1}$ was dissolved in dry acetic acid, after two hours the oxime $\underline{6}$ was isolated in a yield of 15% $^{\circ}$ (m.p. 183-184 $^{\circ}$ C, from chloroform/hexane). MS: M $^{\prime}$ 260.15 $(C_{15}H_{20}N_{2}O_{2})$. IR(KBr): 3180 cm⁻¹ (OH), 1600 cm⁻¹ (C=O). ¹H NMR δ (CDC1₂): 1.78 (s, $3H,CH_3$, 7.90 (s,1H,CH=N)ppm. ¹³C NMR δ (CDCl₃): 170.0 (s,C=O), 149.9 (d,C=N), 138.8 (s), 135.2 (s) and 132.5 (s) (C=C and Ph C-l)ppm. Prolonged reaction time or reaction of 6 in acetic acid for two hours resulted in the formation of a $6H-$ 1,2-oxazin-6-one ($\frac{7}{2}$) (m.p. 97^oC (dec)) in a yield of 65% starting from 6. Mass spectrometry showed the molecular ion (M['] 187.06) which corresponds with C_{li}H_aNO₂, and a fragmentation pattern (M⁺-NO,M[']-NO-CO) that is characteristic for 6H-1,2oxazin-6-ones⁷. IR(KBr): 1715 cm⁻¹ (C=O). ¹H NMR δ (CDCl₃): 2.20 (s,3H,CH₃), 8.17 $(s, 1H, CH=N)$ ppm. ^{13}C NMR δ (CDCl₃): 165.5 (s,C=O), 147.2 (d,C=N), 138.9 (s), 132.7 (s) and 131.3 (s) (C=C and Ph C-1)ppm. The formation of the oxime 6 can be explained by an acid induced tautomerization of the nitrone to the dihydroazete derivative 5^8 , which is thermally very unstable 9 and immediately undergoes a ring opening reaction to give 6. Oxime 6 cyclizes in acetic acid medium to the oxazinone 7.

Since both base and acid failed to isomerize the 2,3-dihydroazete l-oxide to a 8-lactam and effected ring **opening** we decided to investigate the possibility of oxidative isomerization. Analogous oxidation of a 1-pyrroline l-oxide to a l-hydroxy-2-pyrrolidinone has been reported 10 . Lead tetraacetate reacted with $1\,$ (two hours at 20^oC) to yield the *N*-acetoxy β -lactam 8 in a yield of 51% (m.p. 113-115^oC (dec), from chloroform/hexane). The B-lactam structure is evident from the carbonyl absorption in the IR and 13 C NMR spectra, and from other spectroscopic data. MS: M' 318.15 $(C_{1.7}H_{2.2}N_{.2}O_A)$. IR(KBr): 1820 cm⁻¹ (OCOCH₃), 1780 cm⁻¹ (C=O, lactam), 1630 cm⁻¹ (C=O,amide). ¹H NMR δ (CDC1₃): 1.82 (s,3H,CH₃), 4.08 (s,1H,H-3)ppm. ¹³C NMR 6 (CDCl₃): 167.4 (s) and 167.1 (s) (O-C=O and C=O, amide), 162.7 (s, C=O, lactam), 74.3 (s, C-4), 63.1 (d, C-3), 21.0 (q, CH₃)ppm. Hydrolysis of the N-acetoxy group in 8 was achieved in a quantitative yield with aqueous sodium carbonate, and yielded the N-hydroxy β -lactam $\underline{9}$ (m.p. 186-189 $^{\sf O}$ C (dec), from chloroform/hexane).

All reactions were carried out at room temperature; i: NaOH in methanolwater (2:1); ii: acetic acid; iii: Pb(OAc), in benzene; iv: Na₂CO₃ in $methano 1-water$ (1:1).

MS: M^+ 276.14 (C₁₅H₂₀N₂O₃). IR(KBr): 3250 cm⁻¹ (OH), 1775 cm⁻¹ (C=O,lactam), 1625
(C=O,amide). ¹H NMR δ (CDC1₃): 1.84 (s,3H,CH₃), 3.97 (s,1H,H-3)ppm. ¹³C NMR δ (CDC1₃): 170.0 (s,C=O,amide), 16 $CH₃$) ppm.

Acknowledgement. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

References and Notes

- 1. A.D. de Wit, M.L.M. Pennings, W.P. Trompenaars, D.N. Reinhoudt, S. Harkema and O. Nevestveit, J. Chem. Soc. Chem. Commun., 1979, 993.
- 2. G.R. Delpierre and M. Lamchen, Q. Rev. Chem. Soc., 19, 329 (1965). Methodicum Chimicum, ed. F. Korte, G. Thieme Verlag, Stuttgart, 1974; vol. 6, p. 341. F. Kröhnke, Justus Liebigs Ann. Chem., 604, 203 (1957).
- 3. Nitrone 1 slowly polymerizes in solution, even at room temperature.
- 4. Satisfactory elemental analyses were obtained for all new compounds (C,H,N $+ 0.3%$.
- 5. J. Perronnet, P. Girault and J.-P. Demoute, J. Heterocycl. Chem., 17, 727 (1980).
- 6. Presumably, acid catalyzed polymerization of the starting nitrone accounts for the low yield of 5.
- 7. R.A. Abramovitch, I. Shinkai, B.W. Cue, Jr., F.A. Ragan, Jr. and J.L. Atwood, J. Heterocycl. Chem. 13, 415 (1976).
- 8. For examples of nitrone-N-hydroxy enamine tautomerism see: M. Mousseron-Canet and J.-P. Boca, Bull. Soc. Chim. Fr., 1967, 1296.
- 9. See for instance: E. Schaumann and F. Grabley, Chem. Ber., 113, 3024 (1980).
- 10. N.J.A. Gutterridge and F.J. McGillan, J. Chem. Soc.C, 1970, 641.

(Received in UK 2 January 1981)